Time Domain
نویسندگان
چکیده
In its full generality, a time domain can be defined as a set of temporal individuals connected by a set of temporal relations. Different choices for the temporal individuals and/or the temporal relations give rise to different temporal ontologies. In the database context, the most common temporal ontology takes time instants (equivalently, points or moments) as the temporal individuals and a linear order over them as the (unique) temporal relation [5]. In addition, one may distinguish between discrete and dense, possibly continuous, time domains and between bounded and unbounded time domains. In the discrete case, one may further consider whether the time domain is finite or infinite and, in the case of unbounded domains, one can differentiate between left-bounded, rightbounded, and totally unbounded domains. Moreover, besides linear time, one may consider branching time, where the linear order is replaced with a partial one (a tree or even a directed acyclic graph), or circular time, which can be used to represent temporal periodicity. As for temporal individuals, time instants can be replaced with time intervals (equivalently, periods or anchored stretches of time) connected by (a subset of) Allen’s relations before, meets, overlaps, starts, during, equal, and finishes, and their inverses or suitable combinations [7]. As in the case of instant-based domains, one may distinguish between discrete and dense domains, bounded and unbounded domains, linear, branching, and circular domains, and so on.
منابع مشابه
Discretized Adjoint State Time and Frequency Domain Full Waveform Inversion: A Comparative Study
This study derives the discretized adjoint states full waveform inversion (FWI) in both time and frequency domains based on the Lagrange multiplier method. To achieve this, we applied adjoint state inversion on the discretized wave equation in both time domain and frequency domain. Besides, in this article, we introduce reliability tests to show that the inversion is performing as it should be ...
متن کاملImage encryption based on chaotic tent map in time and frequency domains
The present paper is aimed at introducing a new algorithm for image encryption using chaotic tent maps and the desired key image. This algorithm consists of two parts, the first of which works in the frequency domain and the second, in the time domain. In the frequency domain, a desired key image is used, and a random number is generated, using the chaotic tent map, in order to change the phase...
متن کاملEnlarging Domain of Attraction for a Special Class of Continuous-time Quadratic Lyapunov Function Piecewise Affine Systems based on Discontinuous Piecewise
This paper presents a new approach to estimate and to enlarge the domain of attraction for a planar continuous-time piecewise affine system. Various continuous Lyapunov functions have been proposed to estimate and to enlarge the system’s domain of attraction. In the proposed method with a new vision and with the aids of a discontinuous piecewise quadratic Lyapunov function, the domain of attrac...
متن کاملAn efficient finite difference time domain algorithm for band structure calculations of Phononic crystal
In this paper, a new algorithm for studying elastic wave propagation in the phononic crystals is presented. At first, the displacement-based forms of elastic wave equations are derived and then the forms are discretized using finite difference method. So the new algorithm is called the displacement-based finite difference time domain (DBFDTD). Three numerical examples are computed with this met...
متن کاملNewborn EEG Seizure Detection Based on Interspike Space Distribution in the Time-Frequency Domain
This paper presents a new time-frequency based EEG seizure detection method. This method uses the distribution of interspike intervals as a criterion for discriminating between seizure and nonseizure activities. To detect spikes in the EEG, the signal is mapped into the time-frequency domain. The high instantaneous energy of spikes is reflected as a localized energy in time-frequency domain. Hi...
متن کاملDynamic Harmonic Analysis of Long Term over Voltages Based on Time Varying Fourier series in Extended Harmonic Domain
Harmonics have become an important issue in modern power systems. The widespread penetration of non-linear loads to emerging power systems has turned power quality analysis into an important operation issue under both steady state and transient conditions. This paper employs an Extended Harmonic Domain (EHD) based framework for dynamic analysis of long term analysis over voltages during the tra...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2009